The measurment of the digital cable characteristic resistance (TTL driver 12MHz)

Rc=60 Ohm

LVDS driver research

Double digital cable (D7 -/D7) (LVDS driver 53 MHz)

The same, but the scale is extended

Double digital cable (CLK - /CLK) (LVDS driver 53 MHz)

Double digital cable (D3 -/D3) (LVDS driver 53 MHz)

Twisted pair + digital cable D5 - /D5 (LVDS driver 53 MHz)

LVDS driver

The measurment of the coaxial cable characteristic resistance see the first page) (TTL driver 12MHz)

1. Rc=72 Ohm

2. Rc=60 Ohm

Coaxial + digital cables (CLK - /CLK) (on the Hybrid side)(LVDS driver 53 MHz)

LVDS driver

The measurment of the twisted pair characteristic resistance (see the first page) (TTL driver)

Rc=120 Ohm

One twisted pair + digital cable for Mode0, Mode1, CH_Mode, PR_IN R=?

One twisted pair + digital cable R= 90 Ohm (12 MHz)

One twisted pair + digital cables R= 90 Ohm (1 MHz)

One twisted pair + digital cable R= 120 Ohm (12 MHz)

One twisted pair + digital cables R= 120 Ohm (1 MHz)

One twisted pair + digital cable R= 60 Ohm (12 MHz)

One twisted pair + digital cables R= 60 Ohm (1 MHz)

One twisted pair + digital cable R= 50 Ohm (12 MHz)

One twisted pair + digital cables R= 50 Ohm (1 MHz)

One twisted pair + digital cable for the Mode0, Mode1, CH_Mode, PR_IN signals R= 60 Ohm

12MHz

Parallel termination one twisted pair + double digital cabel for the Mode0, Mode1, CH_Mode, PR_IN signals

12 MHz, R=60Ohm

1MHz, R=90Ohm

12 MHz, R=900hm

1MHz, R=120 Ohm

12 MHz, R=120 Ohm

The termination on the JC for the twisted pair+digital cabel

TTL driver output 1 MHz

The same signal on the transition card

The same configuration for the 12 MHz

Two twisted pairs in parallel + digital cable open single ended signal

Two twisted pairs in parallel + digital cable characteristic resistense measurment (see the first page)

Two twisted pairs in parallel + digital cable open ended signal (1 MHz)

Two twisted pairs in parallel + digital cable open ended signal (53 MHz)

Two twisted pairs in parallel + digital cable open ended signal (12 MHz)

The termination circuit for the Purple card for the Mode0, Mode1, CH_Mode and PR_IN signals

It is necessary to replace 90 Ohm resistors to 60 Ohm.

Conclusion

- 1. It is necessary to replace the resistors for the Mode_0, Mode_1, CH_Mode and PR IN on the purple board from 90 Ohm to 60 Ohm.
- 2. It is necessary to terminate by the resistor 120 Ohm on the Hybrid side only CLK and /CLK signals.
- 3. There are several solution for the termination Mode_0, Mode_1, CH_Mode and PR_IN signals (see above).
- 4. To add serial resistors 150hm for the CLK /CLK on the Adapter Card?